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Abstract In this paper, we consider Levitin—Polyak type well-posedness for a gen-
eral constrained vector optimization problem. We introduce several types of (gen-
eralized) Levitin—Polyak well-posednesses. Criteria and characterizations for these
types of well-posednesses are given. Relations among these types of well-posedness
are investigated. Finally, we consider convergence of a class of penalty methods under
the assumption of a type of generalized Levitin—Polyak well-posedness.
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1 Introduction

The study of well-posedness started from Tykhonov [16] and Levitin and Polyak [12].
Since then, various notions of well-posedness have been defined and extensively stud-
ied (see, e.g. [5, 10, 17] and the references therein). It is worth noting that recent
studies on well-posedness have been extended to vector optimization problems (see,
e.g. [3,7, 14] and the references therein). The study of Levitin—Polyak well-posedness
for convex scalar optimization problems with explicit constraints originates from [10].
Most recently, this research was extended to nonconvex optimization problems with
explicit constraints (Huang and Yang, Submitted).

Let (X,d;) and (Z, d,) be two metric spaces. Let Y be a normed space ordered by
a closed and convex cone C with nonempty interior intC, i.e., Vy1,y2 € Y, y1 <c »2 if
and only if y» — y; € C. Arbitrarily fix an e € intC. Let X; C X and K C Z be two

X. X. Huang (<)
School of Management, Fudan University, Shanghai 200433, China
e-mail: xxhuang@fudan.edu.cn

X. Q. Yang
Department of Applied Mathematics, The Hong Kong Polytechnic University, Kowloon,
Hong Kong

@ Springer



288 J Glob Optim (2007) 37:287-304

nonempty and closed sets. Consider the following constrained vector optimization
problem:

(VP) inf f(x)
s.t. x € X1, gx) € K,

where f: X — Y and g: X — Z are continuous functions.
Denote by Xj the set of feasible solutions of (VP), i.e.,

Xo={xe X;:g(x) € K}.

Throughout the paper, we always assume that X # (.
Denote by X* the set of weakly efficient solutions of (VP), namely, for any x* € X*,

(1) x* € Xp and
(2) foranyx e Xo, f(x) — f(x*) ¢ —intC.

We denote by V the set of infimal points of (VP). That is, v € V if and only if

(1) there exists no x € X such that f(x) — v € intC;
(2) there exists a sequence {x;} C X such that f(x;) — v.

Throughout the paper, we always assume that V' = ¢J. Let (P, d) be a metric space
and P; C P. We denote by dp, (p) = inf{d(p,p’) : p’ € P1} the distance from the point
p to the set Py.

Define

&(y) =min{t:y <cte}, VyeY.

It is known from [13] that & is continuous, homogenous, (strictly) monotone (i.e.,
E(y1) <&(yp)ifys —y1 € C) and £(y1) < &(y2) if y2 — y1 € intC) and convex.

Many optimization methods for (VP) may generate a sequence {x;} C Xj such
that dx, (xx) — 0.

Penalty type methods for (VP) (and its special cases, e.g. Y = R/, C = RZJF), such as
penalty function methods (see, e.g. [9]) and augmented Lagrangian methods (see, e.g.
[8]) may generate a sequence {x;} C Xj such that dx(g(xx)) — 0, but dx, (xx) /4 0.

In this paper, we will study such sequences under additional conditions. This study
should be useful to the study of convergence of some optimization methods for (VP)
as will be seen in Sect. 4 of this paper.

In what follows, we will introduce several notions of Levitin—Polyak well-posedness
and generalized Levitin-Polyak wells-posedness for (VP).

Definition 1.1

(1) (VP)issaid to be type I Levitin—Polyak (LP in short) well-posed if X* # ¢ and,
for any {x;} satisfying

dx,(xk) = 0 1)
and
dy (f(xx)) — 0, 2)
there exist a subsequence {xk].} and an x* € X™* such that

lim x;, = x*.
J—>+o0
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(2) (VP)is said to be type I LP well-posed in the generalized sense if X* # ¢ and,
for any {x;} satisfying
dk(g(xk)) — 0 A3)
and (2),

there exist a subsequence {xk/.} and an x* € X* such that

lim X =x*.
j—+oo !

The sequence satisfying (1) and (2) is called a type I LP minimizing one while the
sequence satisfying (3) and (2) is called a type I generalized LP minimizing one.

Definition 1.2
(1) (VP)issaid to be type II LP well-posed if X* # ¢ and, for any {x,} satisfying (1)
and
fxr) <cvi+ere forsome {vi} Cc V' andsome 0 < ¢, — O, 4)

there exist a subsequence {xk;} and an x* € X™* such that
lim xj; = x*.

J—>+o0

(2) (VP)issaid to be type II LP well-posed in the generalized sense if X* # ¢ and,
for any {xx} meeting (3) and (4), then there exist a subsequence {xj} and an
x* € X* such that

lim xg, = x*.
j—+oo

The sequence satisfying (1) and (4) is called a type II LP minimizing one while
the sequence satisfying (3) and (4) is called a type II generalized LP minimizing
one.

Definition 1.3

(1) (VP) is said to be type III LP well-posed if X* # ¢ and, for any {x,} satisfying
(1) and

lim inf [ inf £(v — f(xk))] >0, )
k—+o00 |veV

there exist a subsequence {xk].} and an x* € X* such that
lim oy, = x*.

J—>+o0

(2) (VP)issaid to be type III LP well-posed in the generalized sense if X* # ¢ and
for any {x;} meeting (3) and (5), then there exist a subsequence {xx;} and an
x* € X* such that

lim xg, = x*.
j—>+00

The sequence satisfying (1) and (5) is called a type III LP minimizing one while the
sequence satisfying (3) and (5) is called a generalized LP minimizing one.
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Remark 1

(1) The definitions of types I (condition (2)), IT (condition (4)) and III (condition (5))
(generalized) LP minimizing sequence were motivated by Definitions 2.3-2.5 of
[6].

(2) Itis easy to see that a type I (generalized) LP minimizing sequence is a type II
generalized LP minimizing sequence and that a type II (generalized) LP mini-
mizing sequence is a type III (generalized) LP minimizing sequence. Thus, the
type III (generalized) LP well-posedness implies the type II (generalized) LP
well-posedness and the type II (generalized) LP well-posedness implies the type
I (generalized) LP well-posedness.

(3) Any type of (generalized) well-posedness implies that the set X* of weakly
efficient solutions of (VP) is nonempty and compact.

(4) WhenY =R! C = R, type I (generalized) LP well-posedness coincides with
type II (generalized) LP well-posedness, type I (1) LP well-posedness is just the
LP well-posedness in (Huang and Yang, submitted) while type I (II) generalized
LP well-posedness is the generalized LP well-posedness defined in (Huang and
Yang, submitted), and type I1I generalized LP well-posedness is just the strongly
generalized LP well-posedness in (Huang and Yang, submitted).

The paper is organized as follows. In Sect. 2, we present some criteria and char-
acterizations for the various (generalized) LP well-posednesses. Section 3 gives the
relations among these types of (generalized) LP well-posednesess. Section 4 presents
an application of a generalized LP well-posedness to the convergence of a class of
penalty methods for (VP).

2 Criteria and characterizations for (generalized) Lp well-posedness

In this section, we give necessary and sufficient conditions for the various types of
(generalized) LP well-posedness defined in Sect. 1.
Consider the following statement:
[X* # @ and, for any type I (resp. types 11, and 111,
generalized types I-111)
LP minimizing sequence {x;}, we have dy«(x;) — 0]. (6)

First, we have the following result, whose proof is elementary and thus omitted.

Proposition 2.1 If (VP) is type I (resp. types 1l and 111, generalized types I-I11I) LP
well-posed, then (6) holds. Conversely, if (6) holds and X* is compact, then (VP) is
type I (resp. types 11, and 111, generalized types I-11I) LP well-posed.

Now consider a real-valued function ¢ = c(¢, s) defined for #,s > 0 sufficiently small,
such that

c(t,s) >0, Vt,s, ¢(0,0)=0, (7)
sk — 0,1 > 0,c(tg,sx) — 0imply t;, — 0. 8)
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Theorem 2.1 If (VP) is type I LP well-posed, then there exists a function c satisfying
(7) and (8) such that

dy(f(x) = c(dx+(x),dx,(x)), Vxe€ Xj. ©)

Conversely, suppose that X* is nonempty and compact, and (9) holds for some ¢
satisfying (7) and (8). Then (VP) is type I LP well-posed.

Proof Define
c(t,s) = inf{dy(f(x)) : x € X1,dx=(x) = t,dx,(x) = s}.

It is obvious that c¢(¢,s) > 0,Vs,t and ¢(0,0) = 0. Moreover, if sz — 0, #;z > 0 and
c(ty,sr) — 0, then, there exists a sequence {x;} C X with

dx+(xg) = tg, (10)
dx, (xr) = s, (11)

such that
dy (f(xx)) — 0. (12)

Note that s — 0. This fact together with (11) and (12) implies that {x} is a type I LP
minimizing sequence. By Proposition 2.1, we have #; — 0. This completes the proof of
the first part of the theorem. Conversely, let {xx} be a type I LP minimizing sequence.
Then, by (9), we have

dy (f(xr)) > cldx=(xr), dx,(xr)), Vk. (13)

Let
e = dx-(x), sk = dx,(xk).

Then, sy — 0. In addition, dy (f(xx)) — 0. These facts together with (13) as well as
the properties of the function ¢ imply that ¢4 — 0. By Proposition 2.1, we see that
(VP) is type I LP well-posed. |

Theorem 2.2 [f (VP) is type I LP well-posed in the generalized sense, then there exists
a function c satisfying (7) and (8) such that

dy(f(x)) = c(dx=(x),dg(g(x))), Vx € Xj. (14)

Conversely, suppose that X* is nonempty and compact, and (14) holds for some ¢
satisfying (7) and (8). Then (VP) is type I LP well-posed in the generalized sense.

Proof The proof is almost the same as that of Theorem 2.1. The only difference lies
in the proof of the first part of Theorem 2.1. Here, we define

c(t,s) = inf{dy (f(x)) : x € X1,dx+(x) =t,dg(g(x)) = s}. o

Furi and Vignoli [6] characterized well-posedness of optimization problems
(defined in a complete metric space (X, d1)) by making use of the Kuratowski measure
of noncompactness of a subset A of X defined by

a(A) = inf [e >0:AcC U (, forsome C;,diam(C;) < e] s

1<i<n
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where diam(C;) is the diameter of C; defined by
diam(C;) = sup{d; (x1,x2) : x1,x2 € C;}.
Given two nonempty subsets A and B of X, define the excess of set A to set B by
e(A,B) = sup{dp(a) : a € A}.
The Hausdorff distance between A and B is defined as
haus(A, B) = max{e(A, B),e(B,A)}.

Next we give Furi—Vignoli type characterizations for the various (generalized) LP
well-posednesses.
Let, for each € > 0,

T{() = fx € X1 :dy(f()) < €,dx,(x) < €).
Theorem 2.3 Let (X,dy) be a complete metric space and V # (. Then (VP) is type 1
LP well-posed if and only if
lim a(T}(e) =0. (15)
€—>

Proof First, we show that for each € > 0, Tl1 (e) is nonempty and closed. The non-

emptiness of Tl1 (e) follows from the fact that V' £ @. Let {x;} C Tl1 (¢) and x; — Xx.
Then

dyv(f(xp) <€ (16)
and
dx,(x) < e. (17)
From (17), we have
dy,(x) <e. (18)

By the continuity of f and (16), we obtain

dy(f(x)) <e. (19)

The combination of (18) and (19) shows that x € T11 (¢). Thus, T11 (¢) is closed.
Second, we show that

X* = Ne=0T} (€). (20)

It is obvious that X* C N¢~o T} (€). Now suppose that ¢, — 0 and x* € NP2, T11 (k).
Then,

dy(f(x*)) < e, Vk (21)
and
dXO(x*) <e€, Vk. (22)

By (21), we have f(x*) € V. By (22), we have x* € Xj. Hence, x* € X*.
@ Springer
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Now we assume that (15) holds. Clearly, T11 (+) is increasing with € > 0. By the
Kuratowski theorem ([11], p 318), we have

haus(71(e), T}) - 0 ase — 0, (23)
where
T11 = ﬁe>OTl1 (€)

is nonempty and compact.

Let {x} be a type I LP minimizing sequence. Then, by taking a subsequence, we
can find a decreasing sequence ¢, — 0 such that dy (f(xx)) < €x and dy,(xx) < .
Thus, x;, € Tl1 (ex)- It follows from (20) and (23) that dx+(x;) — 0. By Proposition 2.1
(VP) is type I LP well-posed.

Conversely, let (VP) be type I LP well-posed. Consider the excess

q(e) = e(Ti(e),X*), €>0.

We show that g(e) — 0 as € — 0. If not, there exist § > 0, ¢4 — 0, x; € Tl1 (ex) such
that

dx«(xp) = 8, Vk,

contradicting the type I LP well-posedness of (VP). Thus, g(¢) — 0 as ¢ — 0. Note
that

Tle) C {x € Xy : dx+(x) < q(e)).
It follows that
a(T](€) < 2q(e).

since a(X™*) = 0. Consequently (15) holds. The proof is complete. O

Consider
T3 (e) = {x € X} : dy(f(x)) < €,dk(g(x)) < €}.

The following theorem can be proved analogously to Theorem 2.3.

Theorem 2.4 Let (X,dy) be a complete metric space and V # (). Then (VP) is type 1
LP well-posed in the generalized sense if and only if

lim a(T?(€)) = 0. (24)
€—
Define

T%(e) ={xeX;:dx,(x) <¢€,f(x) <cv+eeforsomev e V}.

Theorem 2.5 Let (X,dy) be a complete metric space and V # @. Then (VP) is type 11
LP well-posed if and only if

lim a(Ti(€) = 0. (25)
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Proof 1t is obvious from V # @ that T; (e) # ¥,Ye > 0. Thus, clT% (¢) is nonempty
and closed. Of course, c/ Tz1 (+) is increasing with €. Now we show that

X* = NeaoclTi (). (26)

Obviously, X* C Ne=ocl T3 (€). Letx* € Ne=oclT3(e) and € | 0. By x* € N, clT) (ex),
for each k, there exist xi; € X1 and v; € V such that

Fxkp) <c vij+ exe, (27)
Xij— X (28)

and
dx,(xij) < €k = dx,(x*) < €. (29)

From (27) and (28) and the continuity of f, we have that for each k, there exists j(k)
such that

F&*) <c Vi + 2exe. (30)
Suppose to the contrary that x* ¢ X*. Then there exist xg € Xp and § > 0 such that
fxo) =c f(x™) — de. (31)

From (30) and (31), we have
f(x0) <c Vkjk) +2exe — e
= Vijiy — (6 = 2e)e. (32)

Since € | 0,8 — 2¢, > §/2 when k is sufficiently large. Thus (32) contradicts the fact
that vy iy € V when k is sufficiently large. Hence, there holds x* € X*. Thus (26) is
proved.

Now assume that (24) holds. Then

a(clTi(e)) = a(Ti(€)) - 0 ase — 0.
By the Kuratowski theorem, it follows that
haus(clT% (e), T;) —0 ase — 0, (33)
where
T21 = ﬂ5>0ClT21(6)

is nonempty and compact. Let {x;} be a type II LP minimizing sequence. Then, by
taking a subsequence, we can find a decreasing sequence €, — 0 and a sequence
{vk} C V such that

f(xk) <c vi + €xe, (34)
dx,(xi) < €. (35)

From (34) and (35), we see that x; € T21 (ex). It follows from (26) and (33) that
dx+(xy) — 0. By Proposition 2.1 and the compactness of X*, we deduce that (VP) is
type II LP well-posed. The proof of the second part of the theorem is similar to that
of the second part of Theorem 2.3. O
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Let
T%(e) ={xe Xy :dx(gkx)) <e,f(x) <cv+eeforsomev e V}.

The next theorem can be proved analogously to Theorem 2.5.

Theorem 2.6 Let (X,dy) be a complete metric space and V # @. Then (VP) is type 11
LP well-posed in the generalized sense if and only if

lim a(73(€)) = 0.
e—0

Definition 2.4 (VP) is said to be inf-externally stable if for each xg € Xp, there exists
vo € V such that vo <¢ f(xo).

Define
Tie) ={xe X : inf £(v—f(1)) 2 —€,dx; (x) < }.
ve

Theorem 2.7 Let (X,dy) be a complete metric space and V # (. Suppose that (VP) is
inf-externally stable. Then (VP) is type III LP well-posed if and only if

lim a (T} (€)) = 0.
e—0

Proof First, we show that T31 (e) is nonempty and closed for any € > 0. The nonemp-
tiness of 73 (e) follows from the fact that V # . Now let {x;} C Ti(e) and xx — X.
Then,

inf £(v — (50 = —, (36)
ve
d)(o (xp) <e. (37)

Note that the continuity of f implies that the function inf,cy (v — f(-)) is upper
semicontinuous. Taking the upper limit in (36), we have

inf (v — f(0) = —e. (38)

veV

Taking the limit in (37), we obtain
dXo (x) <e. (39)

The combination of (38) and (39) yields x € T31 (¢). Hence, Tg (e) is closed.
Second, we show that

X* = Ne=oTi(e). (40)
Obviously, X* C ﬁ€>0T31 (¢). Now let x* € ﬂ€>oT§ (¢) and ¢; | 0. Then
inf &(v — f(x")) > —¢, (41)
veV
dXO(x*) < €. (42)

From (42), we have x* € Xp. From (41), we have
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EV—f(x*) >0, VveV. (43)
Suppose to the contrary that there exist xop € Xp and § > 0 such that
fxo) — f(x*) <¢ —de. (44)

By the inf-external stability of (VP), there exists vg € V such that vy <¢ f(xp). This
together with (44) implies that

E(vo — f(x™) = =4,

contradicting (43). Thus (40) is proved. Clearly, T31 (+) is increasing with € > 0. By the
Kuratowski theorem, we have

haus(T31(e), T31) — 0 ase — 0, (45)
where
T31 = me>OT’J}(€)

is nonempty and compact.
Let {x} be a type III LP minimizing sequence. Then, by taking a subsequence, we
can find a decreasing sequence €, — 0 such that

inf §(v — fx)) = —ek,

dx,(xp) < €.

Thus, x € T3 (ex). By (40) and (45) we see that dx=(x;) — 0. By Proposition 2.1 (VP)
is type IIT LP well-posed. The second part of the theorem can be proved similarly to
that of Theorem 2.3. The proof is complete. O

Define
T5(e) = [x € Xy inf £ —f(¥) = —€,dxk(g()) = e] .
ve
The following theorem can be proved analogously to Theorem 2.7.
Theorem 2.8 Let (X,dy) be a complete metric space and V # (). Suppose that (VP)

is inf-externally stable. Then (VP) is type I1I LP well-posed in the generalized sense if
and only if

lim a(73(€)) = 0.
e—0

Next proposition gives sufficient conditions for the type III (generalized) LP well-
posedness.

Proposition 2.2
(1) Assume that there exists § > 0 such that
X1(8) ={x € X1 :dx,(x) <&} (46)

is compact. Then, (VP) is type 111 LP well-posed.
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(2) Assume that there exists § > 0 such that
X2(8) = {x € X1 1 dk(g(x)) <8} (47)
is compact. Then (VP) is type III LP well-posed in the generalized sense.

Proof We prove only (1) and (2) can be similarly proved.
Let {xx} be a type III LP minimizing sequence. Then

lim inf{inf £(v — f(xx))} > 0, (48)
k—4o00 veV
dx,(xr) — 0. (49)

(49) implies that x; € X1(8) when k > ko for some kg > 0. By the compactness of
X1(8), there exist a subsequence {xx;} and x* € X1(8) such that X, —> x*. This together
with (49) implies that x* € Xj. Moreover, from (48), we have

Ev—f(x") =0, VveV. (50)
Suppose to the contrary that x* ¢ X*. Then, there exists xg € Xo such that
fxo) — f(x*) € —intC. (51)

Note that Xy C X7(8) is nonempty and compact and f is continuous. Consequently,
there exists vg € V such that

vo <c f(x0). (52)
The combination of (50)—(52) leads to a contradiction. Hence, x* € X* and the proof
is complete. O

Now we consider the special case when X is a finite dimensional normed space,
Y=R.C=R,,e=(,....1) e RLEY) =max{y; :i=1,...,[},Vy e Y.

Definition 2.2 Let X be a finite dimensional normed space, X2 C X be nonempty
and fy : Xo — RL. fo is said to be level-bounded on X if, for each ¢ € R!, the set
{x € X2 : fo(x) <1t} is bounded.

Proposition 2.3 Assume that X is a finite dimensional space, Y = R!, C = Rl+. Further
assume that one of the following conditions holds:

(1) foreachie {1,....1}, f; is level-bounded on X1;

(2) there exists 8§ > 0 such that for each i € {1,...,1}, fi is level-bounded on X{(8),
where X1(3) is defined by (46), and

(3) foreachie{l,....,1},

lim max{f;(x), dx, (x)} = +o0. (53)

xeXy,|lx||—+o0

Then (VP) is type 111 LP well-posed.

Proof Clearly, (1)=(3)=(2). So we need only to prove that if (2) holds, then (VP)

is type IIT LP well-posed. Let {x;} be a type III LP minimizing sequence. Then (48)

and (49) hold. (49) implies that x; € X1(5),Vk > ko for some ko > 0. (48) implies that
there exists 0 < ¢, — 0 such that

EW—f(xp) > —€;, VYveV. (54)
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We assert that {x;} is bounded. Otherwise, assume without loss of generality that
Xkl = +oc. Then, by the level-boundedness of each f; on X (8), we have

lim fij(xr) = +o0.
k—+o00

It follows that (54) cannot hold. Thus, there exist a subsequence {xk].} of {x;} and
x* € Xj such that x;; — x*. This together with (49) implies that x* € Xo. Now we
show that x* € X*. Otherwise, there exist xo € Xy and §9 > 0 such that

fitxo) < fix™, i=1,...,L (55)
It is obvious that the set
A={xeX:filx) <filxo),i=1,....,[}

is nonempty and compact. Note that xo € A. It follows that there exists X € A such
that f(x) — f(x) ¢ —C\{0},Vx € A. It is easily verified that x € X*. Moreover, by
X € A, we have

f@) =c f(xo).
This together with (55) implies that

f) =c f(x*) —doe.

From x;; — x* and the continuity of f on X, we have
&) =c fxig) — /2,

when j is large enough, contradicting (54). The proof is complete. O

Similarly, we can prove the next result.

Proposition 2.4 Assume that X is a finite dimensional space, Y = R!, C = Rl+. Further
assume that one of the following conditions holds:

(1) foreachie {1,...,1}, fiis level-bounded on Xi;

(2) there exists § > 0 such that for each i € {1,...,1}, f; is level-bounded on X;(3),
where X>(8) is defined by (47); and

(3) foreachie {1,...,1},

lim  max{fi(v), dk (g(x)} = +oo. (56)

xeXy,|lx||—+o0

Then (VP) is type III LP well-posed in the generalized sense.

Now, we consider the case when Z is a normed space and K is a closed and convex
cone with nonempty interior intK and let ¢’ € intK. Let ¢ > 0 and denote

X3() ={xeX;:g(x) e K—te}). (57)
Proposition 2.5 Let Z be a normed space and K a closed and convex cone with non-

empty interior intK and let ¢’ € intK. If there exists ty > 0 such that X3(to) is compact,
then (VP) is type Il LP well-posed in the generalized sense.
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Proof According to (2) of Proposition 2.2, we need only to show that there exists
80 > 0 such that X»(8o) is compact. To this purpose, we need only to show that there
exist §o > 0 such that X2(8p) C X3(t). Suppose to the contrary that there exists
0 < 8 — 0and x; € X2(8;) such that x; ¢ X3(tp). That is,

dr(g(xk)) < Sk, (58)
g(xx) ¢ K — toe’. (59)
Define
n(z)=min{r e R' : z € —K + '}, VzeZ.

It is obvious that the function 7 has the same properties as the function &. From (59),
we get

n(—gxx)) = to, Vk. (60)

From (58), we deduce that there exists wy € K such that [|g(xg) — wg| — 0. Let
7 = wg — gxg) — 0. Then, —g(xg) = zk — wi, implying n(—g(xx)) < n(zx) — 0,
contradicting (60). The proof is complete. |

Proposition 2.6 Assume that X is a finite dimensional space, Y = R, C = R{w e =
(1,...,1) € R. Let Z be anormed space and K a closed and convex cone with nonemp-

ty interior intK and let ¢ € intK. Further assume that one of the following conditions
holds:

(1) foreachie {1,...,1}, fiis level-bounded on X7;

(2) there exists fo > 0 such that for each i € {1,...,1}, f; is level-bounded on X3(fp);
and

(3) for each i € {1,...,1}, (56) holds. Then, (VP) is type III LP well-posed in the
generalized sense.

Proof It is easy to show that (1)=(3)=>(2). Similar to proof of Proposition 2.5, we
can show that (2) implies that there exists §o > 0 such that for eachi € {1,...,1}, f; is
level-bounded on X3(8p). By (2) of Proposition 2.4 (VP) is type III LP well-posed in
the generalized sense. O

Now we make the following assumption.

Assumption 2.1 X is a finite dimensional normed space, Y = R.C= RIJr X;CXisa
nonempty, closed and convex set, K C Y is a closed and convex cone with nonempty
interior intK and ¢’ € intK, each fj(i = 1,...,]) is a convex function on X and g is
K-concave on X (namely, for any xq,x; € X; and any 6 € (0, 1), there holds that
gOx1 + (1 = 0)x2) — 0g(x1) — (1 - 0)g(x2) € K).

It is obvious that under Assumption 2.1 (VP) is a convex vector program.
The next result was obtained in ([9], Theorem 2.1).
Lemma 2.1 Let Assumption 2.1 hold. Then the following statements are equivalent:

(1) the optimal set X* of (VP) is nonempty and compact;
(2) foreachie {1,...,1}, foranyt > 0, f; is level-bounded on the set X3(t) defined by
(57).
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Theorem 2.9 Let Assumption 2.1 hold. Then (VP) is type 11 LP well-posed in the
generalized sense if and only if the optimal set X* of (VP) is nonempty and compact.

Proof The sufficiency part follows directly from Lemma 2.1 and Proposition 2.6, while
the necessity part is obvious by (3) of Remark 1. O

Lemma 2.2 Let Assumption 2.1 hold. Then the following statements are equivalent:

(1) the optimal set X* of (VP) is nonempty and compact;
(2) foreachie {1,---,1}, for any § > 0, f; is level-bounded on the set X1(8) defined
by (46).

Proof Ttis clear that problem (VP) is equivalent to the following vector optimization
problem
(VP’) inf f(x)
s.t. dx,(x) <0.
By Assumption 2.1, X is nonempty and convex. It follows that dx, (-) is a continuous
and convex function. Applying Lemma 2.1 by setting g(x) = dx,(x),Vx € X1, Z = R!

and K = R}F, we see that X* is nonempty and compact if and only if each f; is level-
bounded on X7 (8),V86 > 0,i e {1,...,1}. O

The following theorem follows immediately from (2) of Proposition 2.3 and
Lemma 2.2.

Theorem 2.10 Let Assumption 2.1 hold. Then (VP) is type 111 LP well-posed if and
only if the optimal set X* of (VP) is nonempty and compact.

Remark 2 By Theorems 2.9 and 2.10 as well as (1) of Remark 1.1, if Assumption 2.1
holds, then any type of (generalized) LP well-posednesses is equivalent to the fact
that the set X* is nonempty and compact.

3 Relations among various types of (generalized) LP well-posedness

Simple relationships among the (generalized) LP well-posednesses were mentioned
in (2) of Remark 1. Under Assumption 2.1, the equivalence of all the six types of
(generalized) LP well-posednesses was noted in Remark 2. In this section, we inves-
tigate further relationships among them.

Theorem 3.1 Suppose that there exist § > 0, o > 0, and ¢ > 0, such that
dx,(x) < cdy(g(x)), Vx e Xa(8), (61)

where X,(8) is defined by (47). If (VP) is type I (resp. types 11 and 111) LP well-posed,
then (VP) is type I (resp. types 11 and 111) LP well-posed in the generalized sense.

Proof The proof is elementary. O

Remark 3 (61) is an error bound condition for the set Xy in terms of the residual
function
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r(x) = dg(gx), VxeX.
It is worth mentioning that this error bound condition has been intensively and exten-

sively studied (see, e.g. [2, 4, 15] and the references therein).

Definition 3.3 (1) Let W be a topological space and F: W — 2% be a set-valued map.
F is said to be upper Hausdorff semicontinuous (u.H.c. in short) at w € W if, for any
€ > 0, there exists a neighbourhood U of w such that F(U) C B(F(w),¢€), where for
ZCXandr>0

B(Z,r)={xe X :dz(x) <r}.

It is clear that X,(8) given by (47) can be seen as a set-valued map from R}r to X.
Thus, we have the following theorem.

Theorem 3.2 Assume that the set-valued map X>(8) defined by (47) isu.H.c. at0 € R}r.
If (VP) is type I (resp. types 11 and 111) LP well-posed, then (VP) is type 1 (resp. types
II, and 111) LP well-posed in the generalized sense.

Proof We prove only the type I case, the other two cases can be similarly proved. Let
{xx} C X1 be a type I generalized LP minimizing sequence. That is,

dv () — 0, )
di(g(xx)) — 0. (63)

(63), together with the u.H.c. of X»(8) at 0, implies that dx,(xx) — 0. This fact com-
bined with (62) implies that {x;} is a type I LP minimizing sequence. Thus, there exist
a subsequence {xk;} of {x} and some x* € X™* such that X, —> x*. Hence, (VP) is type
I LP well-posed in the generalized sense. O

Now, we consider the case when Z is a normed space.

Lemma 3.1 Let Z be a normed space and {x;} C Xi. Then, dg(g(xx)) — 0if and only
if there exists {zy} C Z with zx — 0 such that g(x;) € K + z,Vk.

Proof Necessity. From dg (g(x;)) — 0, we deduce that there exists {uy} C K such that

lgCx) — ukll — 0.
Let zx = g(xx) — ug. Then, zx — 0 and g(xy) € K + zi.
Sufficiency. Since g(xy) — zx € K,
dr(8(xk)) = lgCxx) — (8(xx) — zi)ll = llzkll — 0. O
Let
X4(2)={xe X1 :gx) e K+2z}, VzeZ (64)

Clearly, X4(z) can seen as a set-valued map from Z to X.
Corresponding to Theorem 3.2, we have the following result.

Theorem 3.3 Assume that the set-valued map X4(z) defined by (64) isu.H.c. at0 € Z.
If (VP) is type I (resp. types 11, and 111) LP well-posed, then (VP) is type I (resp. types
II, and I11) LP well-posed in the generalized sense.
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In the special case when K is a closed and convex cone with nonempty interior
intK and ¢ € intK. We consider X3(f) defined by (57) as a set-valued map from R}r
to X. We have the next result.

Theorem 3.4 Assume that the set-valued map X3(t) defined by (57) isu.H.c. at0 € R}r
If (VP) is type I (resp. types II, and III) LP well-posed, then (VP) is type I (resp. types
Il and I11) LP well-posed in the generalized sense.

To end this section, we present the following theorem.

Theorem 3.5 Assume that there exists §o > 0 such that g is uniformly continuous on
the set X1(8o) defined by (46). If (VP) is type I (resp. types II, and III) LP well-posed
in the generalized sense, then (VP) is type I (resp. types II, and I1I) LP well-posed.

Proof We prove only the type I case. Suppose that {x;} C X7 is a type I LP minimizing
sequence. That is,

dy (f(xp)) — 0, (65)
dx,(xx) — 0. (66)

By (66), we have dx,(xr) < 8o when k > kg for some ko > 0. By the uniform continu-
ity of g on X1(8p), dx(g(xx)) — 0. This together with (65) implies that {x;} is a type
I generalized LP minimizing sequence. Thus, there exist a subsequence {xk],} of {xy}
and some x* € X* such that x;; — x*. Hence (VP) is type I LP well-posed. o

4 Application to a class of penalty methods

In this section, we consider the convergence of a class of penalty methods under the
assumption of type 111 generalized LP well-posedness of (VP).
Let o > 0 and e € intC. Consider the following penalty problem for (VP):

(VPP (r)) iI}? fx) + rdx(g(x)e, r>0.
xXeAq

Remark 4 This class of penalty methods was studied in, e.g. [9].

Theorem 4.1 Let 0 < r, — +o0o. Consider problems (VP) and (VPP (ry)). Assume
that there exist 7 > 0 and mo € R such that

f) + Fd%(g(x))e >c mpe, Vx € Xj. (67)
Let 0 < €, — 0. Suppose that each x; € X7 satisfies
F0) + ridi(g)e — fxp) — redx (8(xp))e + exe ¢ —intC, Vx e Xq.  (68)

Further assume that (VP) is type III LP well-posed in the generalized sense. Then,
there exist a subsequence {xk;} of {xi} and some x* € X* such that Xj; —> x*. Moreover,
each limit point of {xz} belongs to X*.
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Proof Let xo € Xo. From (68), we deduce that

fx0) = flxp) — redi (g(xx))e + exe ¢ —intC. (69)
The combination of (67) and (69) yields

f(xo) — moe — (rg — Pd%(g(xx))e + exe ¢ —intC

implying
E(f(x0)) —mo — (rx — Pdg (8(xx)) + €, >0
namely,
_ 1/a
di(g5)) < [S(f(xo” ek ’”0] .
Vi —r
Hence,

lim dg (g(x) = 0. (70)
k— 400
Moreover, from (69), we have

f(x0) — f(xx) + exe ¢ —intC.
By the arbitrariness of xg € Xy, this further implies that

v—f(xg) +epe ¢ —intC, VvelV.

Therefore,
EV—f(xp) +e >0, YvelV.
Hence,
lim inf [ inf &(v —f(xk))] > 0. (71)
k—+o0 |veV

By (70) and (71), {x;} is a type III generalized LP minimizing sequence. Since (VP)
is type IIT LP well-posed in the generalized sense, there exist a subsequence {xy;} of
{xx} and some x* € X* such that x;, — x*. Finally, suppose that X is a limit point of
{xr}. Then, there exists a subsequence {xk].} such that X = X. It is obvious that {x.}
is also a type III generalized LP minimizing sequence. By the type III generalized LP
well-posedness of (VP), there exist a subsequence {xkfz} and some X’ € X* such that
Xk, = X'. On the other hand, we have Xkj, = x. It follows that x = X’. Hence, X € X™*.
The proof is complete. O
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