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Abstract In this paper, we consider Levitin–Polyak type well-posedness for a gen-
eral constrained vector optimization problem. We introduce several types of (gen-
eralized) Levitin–Polyak well-posednesses. Criteria and characterizations for these
types of well-posednesses are given. Relations among these types of well-posedness
are investigated. Finally, we consider convergence of a class of penalty methods under
the assumption of a type of generalized Levitin–Polyak well-posedness.
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1 Introduction

The study of well-posedness started from Tykhonov [16] and Levitin and Polyak [12].
Since then, various notions of well-posedness have been defined and extensively stud-
ied (see, e.g. [5, 10, 17] and the references therein). It is worth noting that recent
studies on well-posedness have been extended to vector optimization problems (see,
e.g. [3, 7, 14] and the references therein). The study of Levitin–Polyak well-posedness
for convex scalar optimization problems with explicit constraints originates from [10].
Most recently, this research was extended to nonconvex optimization problems with
explicit constraints (Huang and Yang, Submitted).

Let (X, d1) and (Z, d2) be two metric spaces. Let Y be a normed space ordered by
a closed and convex cone C with nonempty interior intC, i.e., ∀y1, y2 ∈ Y, y1 ≤C y2 if
and only if y2 − y1 ∈ C. Arbitrarily fix an e ∈ intC. Let X1 ⊂ X and K ⊂ Z be two
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nonempty and closed sets. Consider the following constrained vector optimization
problem:

(VP) inf f (x)

s.t. x ∈ X1, g(x) ∈ K,

where f : X → Y and g : X → Z are continuous functions.
Denote by X0 the set of feasible solutions of (VP), i.e.,

X0 = {x ∈ X1 : g(x) ∈ K}.
Throughout the paper, we always assume that X0 �= ∅.

Denote by X∗ the set of weakly efficient solutions of (VP), namely, for any x∗ ∈ X∗,

(1) x∗ ∈ X0 and
(2) for any x ∈ X0, f (x) − f (x∗) /∈ −intC.

We denote by V the set of infimal points of (VP). That is, v ∈ V if and only if

(1) there exists no x ∈ X0 such that f (x) − v ∈ intC;
(2) there exists a sequence {xk} ⊂ X0 such that f (xk) → v.

Throughout the paper, we always assume that V �= ∅. Let (P, d) be a metric space
and P1 ⊂ P. We denote by dP1(p) = inf{d(p, p′) : p′ ∈ P1} the distance from the point
p to the set P1.

Define

ξ(y) = min{t : y ≤C te}, ∀y ∈ Y.

It is known from [13] that ξ is continuous, homogenous, (strictly) monotone (i.e.,
ξ(y1) ≤ ξ(y2) if y2 − y1 ∈ C) and ξ(y1) < ξ(y2) if y2 − y1 ∈ intC) and convex.

Many optimization methods for (VP) may generate a sequence {xk} ⊂ X1 such
that dX0(xk) → 0.

Penalty type methods for (VP) (and its special cases, e.g. Y = Rl, C = Rl+), such as
penalty function methods (see, e.g. [9]) and augmented Lagrangian methods (see, e.g.
[8]) may generate a sequence {xk} ⊂ X1 such that dK(g(xk)) → 0, but dX0(xk) �→ 0.

In this paper, we will study such sequences under additional conditions. This study
should be useful to the study of convergence of some optimization methods for (VP)
as will be seen in Sect. 4 of this paper.

In what follows, we will introduce several notions of Levitin–Polyak well-posedness
and generalized Levitin–Polyak wells-posedness for (VP).

Definition 1.1

(1) (VP) is said to be type I Levitin–Polyak (LP in short) well-posed if X∗ �= ∅ and,
for any {xk} satisfying

dX0(xk) → 0 (1)

and

dV(f (xk)) → 0, (2)

there exist a subsequence {xkj} and an x∗ ∈ X∗ such that

lim
j→+∞ xkj = x∗.
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(2) (VP) is said to be type I LP well-posed in the generalized sense if X∗ �= ∅ and,
for any {xk} satisfying

dK(g(xk)) → 0 (3)

and (2),
there exist a subsequence {xkj} and an x∗ ∈ X∗ such that

lim
j→+∞ xkj = x∗.

The sequence satisfying (1) and (2) is called a type I LP minimizing one while the
sequence satisfying (3) and (2) is called a type I generalized LP minimizing one.

Definition 1.2

(1) (VP) is said to be type II LP well-posed if X∗ �= ∅ and, for any {xk} satisfying (1)
and

f (xk) ≤C vk + εke for some {vk} ⊂ V and some 0 < εk → 0, (4)

there exist a subsequence {xkj} and an x∗ ∈ X∗ such that

lim
j→+∞ xkj = x∗.

(2) (VP) is said to be type II LP well-posed in the generalized sense if X∗ �= ∅ and,
for any {xk} meeting (3) and (4), then there exist a subsequence {xkj} and an
x∗ ∈ X∗ such that

lim
j→+∞ xkj = x∗.

The sequence satisfying (1) and (4) is called a type II LP minimizing one while
the sequence satisfying (3) and (4) is called a type II generalized LP minimizing
one.

Definition 1.3

(1) (VP) is said to be type III LP well-posed if X∗ �= ∅ and, for any {xk} satisfying
(1) and

lim inf
k→+∞

{
inf
v∈V

ξ(v − f (xk))

}
≥ 0, (5)

there exist a subsequence {xkj} and an x∗ ∈ X∗ such that

lim
j→+∞ xkj = x∗.

(2) (VP) is said to be type III LP well-posed in the generalized sense if X∗ �= ∅ and
for any {xk} meeting (3) and (5), then there exist a subsequence {xkj} and an
x∗ ∈ X∗ such that

lim
j→+∞ xkj = x∗.

The sequence satisfying (1) and (5) is called a type III LP minimizing one while the
sequence satisfying (3) and (5) is called a generalized LP minimizing one.
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Remark 1

(1) The definitions of types I (condition (2)), II (condition (4)) and III (condition (5))
(generalized) LP minimizing sequence were motivated by Definitions 2.3–2.5 of
[6].

(2) It is easy to see that a type I (generalized) LP minimizing sequence is a type II
generalized LP minimizing sequence and that a type II (generalized) LP mini-
mizing sequence is a type III (generalized) LP minimizing sequence. Thus, the
type III (generalized) LP well-posedness implies the type II (generalized) LP
well-posedness and the type II (generalized) LP well-posedness implies the type
I (generalized) LP well-posedness.

(3) Any type of (generalized) well-posedness implies that the set X∗ of weakly
efficient solutions of (VP) is nonempty and compact.

(4) When Y = R1, C = R1+, type I (generalized) LP well-posedness coincides with
type II (generalized) LP well-posedness, type I (II) LP well-posedness is just the
LP well-posedness in (Huang and Yang, submitted) while type I (II) generalized
LP well-posedness is the generalized LP well-posedness defined in (Huang and
Yang, submitted), and type III generalized LP well-posedness is just the strongly
generalized LP well-posedness in (Huang and Yang, submitted).

The paper is organized as follows. In Sect. 2, we present some criteria and char-
acterizations for the various (generalized) LP well-posednesses. Section 3 gives the
relations among these types of (generalized) LP well-posednesess. Section 4 presents
an application of a generalized LP well-posedness to the convergence of a class of
penalty methods for (VP).

2 Criteria and characterizations for (generalized) Lp well-posedness

In this section, we give necessary and sufficient conditions for the various types of
(generalized) LP well-posedness defined in Sect. 1.

Consider the following statement:

[X∗ �= ∅ and, for any type I (resp. types II, and III,

generalized types I–III )

LP minimizing sequence {xk}, we have dX∗(xk) → 0]. (6)

First, we have the following result, whose proof is elementary and thus omitted.

Proposition 2.1 If (VP) is type I (resp. types II and III, generalized types I–III) LP
well-posed, then (6) holds. Conversely, if (6) holds and X∗ is compact, then (VP) is
type I (resp. types II, and III, generalized types I–III) LP well-posed.

Now consider a real-valued function c = c(t, s) defined for t, s ≥ 0 sufficiently small,
such that

c(t, s) ≥ 0, ∀t, s, c(0, 0) = 0, (7)

sk → 0, tk ≥ 0, c(tk, sk) → 0 imply tk → 0. (8)
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Theorem 2.1 If (VP) is type I LP well-posed, then there exists a function c satisfying
(7) and (8) such that

dV(f (x)) ≥ c(dX∗(x), dX0(x)), ∀x ∈ X1. (9)

Conversely, suppose that X∗ is nonempty and compact, and (9) holds for some c
satisfying (7) and (8). Then (VP) is type I LP well-posed.

Proof Define

c(t, s) = inf{dV(f (x)) : x ∈ X1, dX∗(x) = t, dX0(x) = s}.
It is obvious that c(t, s) ≥ 0, ∀s, t and c(0, 0) = 0. Moreover, if sk → 0, tk ≥ 0 and
c(tk, sk) → 0, then, there exists a sequence {xk} ⊂ X1 with

dX∗(xk) = tk, (10)

dX0(xk) = sk, (11)

such that

dV(f (xk)) → 0. (12)

Note that sk → 0. This fact together with (11) and (12) implies that {xk} is a type I LP
minimizing sequence. By Proposition 2.1, we have tk → 0. This completes the proof of
the first part of the theorem. Conversely, let {xk} be a type I LP minimizing sequence.
Then, by (9), we have

dV(f (xk)) ≥ c(dX∗(xk), dX0(xk)), ∀k. (13)

Let

tk = dX∗(xk), sk = dX0(xk).

Then, sk → 0. In addition, dV(f (xk)) → 0. These facts together with (13) as well as
the properties of the function c imply that tk → 0. By Proposition 2.1, we see that
(VP) is type I LP well-posed. �
Theorem 2.2 If (VP) is type I LP well-posed in the generalized sense, then there exists
a function c satisfying (7) and (8) such that

dV(f (x)) ≥ c(dX∗(x), dK(g(x))), ∀x ∈ X1. (14)

Conversely, suppose that X∗ is nonempty and compact, and (14) holds for some c
satisfying (7) and (8). Then (VP) is type I LP well-posed in the generalized sense.

Proof The proof is almost the same as that of Theorem 2.1. The only difference lies
in the proof of the first part of Theorem 2.1. Here, we define

c(t, s) = inf{dV(f (x)) : x ∈ X1, dX∗(x) = t, dK(g(x)) = s}. �
Furi and Vignoli [6] characterized well-posedness of optimization problems

(defined in a complete metric space (X, d1)) by making use of the Kuratowski measure
of noncompactness of a subset A of X defined by

α(A) = inf

{
ε > 0 : A ⊂ ∪

1≤i≤n
Ci, for some Ci, diam(Ci) ≤ ε

}
,
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where diam(Ci) is the diameter of Ci defined by

diam(Ci) = sup{d1(x1, x2) : x1, x2 ∈ Ci}.
Given two nonempty subsets A and B of X, define the excess of set A to set B by

e(A, B) = sup{dB(a) : a ∈ A}.
The Hausdorff distance between A and B is defined as

haus(A, B) = max{e(A, B), e(B, A)}.
Next we give Furi–Vignoli type characterizations for the various (generalized) LP

well-posednesses.
Let, for each ε > 0,

T1
1 (ε) = {x ∈ X1 : dV(f (x)) ≤ ε, dX0(x) ≤ ε}.

Theorem 2.3 Let (X, d1) be a complete metric space and V �= ∅. Then (VP) is type I
LP well-posed if and only if

lim
ε→0

α(T1
1 (ε)) = 0. (15)

Proof First, we show that for each ε > 0, T1
1 (ε) is nonempty and closed. The non-

emptiness of T1
1 (ε) follows from the fact that V �= ∅. Let {xk} ⊂ T1

1 (ε) and xk → x̄.
Then

dV(f (xk)) ≤ ε (16)

and

dX0(xk) ≤ ε. (17)

From (17), we have

dX0(x̄) ≤ ε. (18)

By the continuity of f and (16), we obtain

dV(f (x̄)) ≤ ε. (19)

The combination of (18) and (19) shows that x̄ ∈ T1
1 (ε). Thus, T1

1 (ε) is closed.
Second, we show that

X∗ = ∩ε>0T1
1 (ε). (20)

It is obvious that X∗ ⊂ ∩ε>0T1
1 (ε). Now suppose that εk → 0 and x∗ ∈ ∩∞

k=1T1
1 (εk).

Then,

dV(f (x∗)) ≤ εk, ∀k (21)

and

dX0(x
∗) ≤ εk, ∀k. (22)

By (21), we have f (x∗) ∈ V. By (22), we have x∗ ∈ X0. Hence, x∗ ∈ X∗.
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Now we assume that (15) holds. Clearly, T1
1 (·) is increasing with ε > 0. By the

Kuratowski theorem ([11], p 318), we have

haus(T1
1 (ε), T1

1 ) → 0 as ε → 0, (23)

where

T1
1 = ∩ε>0T1

1 (ε)

is nonempty and compact.
Let {xk} be a type I LP minimizing sequence. Then, by taking a subsequence, we

can find a decreasing sequence εk → 0 such that dV(f (xk)) ≤ εk and dX0(xk) ≤ εk.
Thus, xk ∈ T1

1 (εk). It follows from (20) and (23) that dX∗(xk) → 0. By Proposition 2.1
(VP) is type I LP well-posed.

Conversely, let (VP) be type I LP well-posed. Consider the excess

q(ε) = e(T1
1 (ε), X∗), ε > 0.

We show that q(ε) → 0 as ε → 0. If not, there exist δ > 0, εk → 0, xk ∈ T1
1 (εk) such

that

dX∗(xk) ≥ δ, ∀k,

contradicting the type I LP well-posedness of (VP). Thus, q(ε) → 0 as ε → 0. Note
that

T1
1 (ε) ⊂ {x ∈ X1 : dX∗(x) ≤ q(ε)}.

It follows that

α(T1
1 (ε)) ≤ 2q(ε).

since α(X∗) = 0. Consequently (15) holds. The proof is complete. �

Consider

T2
1 (ε) = {x ∈ X1 : dV(f (x)) ≤ ε, dK(g(x)) ≤ ε}.

The following theorem can be proved analogously to Theorem 2.3.

Theorem 2.4 Let (X, d1) be a complete metric space and V �= ∅. Then (VP) is type I
LP well-posed in the generalized sense if and only if

lim
ε→0

α(T2
1 (ε)) = 0. (24)

Define

T1
2 (ε) = {x ∈ X1 : dX0(x) ≤ ε, f (x) ≤C v + εe for some v ∈ V}.

Theorem 2.5 Let (X, d1) be a complete metric space and V �= ∅. Then (VP) is type II
LP well-posed if and only if

lim
ε→0

α(T1
2 (ε)) = 0. (25)
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Proof It is obvious from V �= ∅ that T1
2 (ε) �= ∅, ∀ε > 0. Thus, clT1

2 (ε) is nonempty
and closed. Of course, clT1

2 (·) is increasing with ε. Now we show that

X∗ = ∩ε>0clT1
2 (ε). (26)

Obviously, X∗ ⊂ ∩ε>0clT1
2 (ε). Let x∗ ∈ ∩ε>0clT1

2 (ε) and εk ↓ 0. By x∗ ∈ ∩∞
k=1clT1

2 (εk),
for each k, there exist xk,j ∈ X1 and vk,j ∈ V such that

f (xk,j) ≤C vk,j + εke, (27)

xk,j → x∗ (28)

and

dX0(xk,j) ≤ εk ⇒ dX0(x
∗) ≤ εk. (29)

From (27) and (28) and the continuity of f , we have that for each k, there exists j(k)

such that

f (x∗) ≤C vk,j(k) + 2εke. (30)

Suppose to the contrary that x∗ /∈ X∗. Then there exist x0 ∈ X0 and δ > 0 such that

f (x0) ≤C f (x∗) − δe. (31)

From (30) and (31), we have

f (x0) ≤C vk,j(k) + 2εke − δe

= vk,j(k) − (δ − 2εk)e. (32)

Since εk ↓ 0, δ − 2εk ≥ δ/2 when k is sufficiently large. Thus (32) contradicts the fact
that vk,k(j) ∈ V when k is sufficiently large. Hence, there holds x∗ ∈ X∗. Thus (26) is
proved.

Now assume that (24) holds. Then

α(clT1
2 (ε)) = α(T1

2 (ε)) → 0 as ε → 0.

By the Kuratowski theorem, it follows that

haus(clT1
2 (ε), T1

2 ) → 0 as ε → 0, (33)

where

T1
2 = ∩ε>0clT1

2 (ε)

is nonempty and compact. Let {xk} be a type II LP minimizing sequence. Then, by
taking a subsequence, we can find a decreasing sequence εk → 0 and a sequence
{vk} ⊂ V such that

f (xk) ≤C vk + εke, (34)

dX0(xk) ≤ εk. (35)

From (34) and (35), we see that xk ∈ T1
2 (εk). It follows from (26) and (33) that

dX∗(xk) → 0. By Proposition 2.1 and the compactness of X∗, we deduce that (VP) is
type II LP well-posed. The proof of the second part of the theorem is similar to that
of the second part of Theorem 2.3. �
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Let

T2
2 (ε) = {x ∈ X1 : dK(g(x)) ≤ ε, f (x) ≤C v + εe for some v ∈ V}.

The next theorem can be proved analogously to Theorem 2.5.

Theorem 2.6 Let (X, d1) be a complete metric space and V �= ∅. Then (VP) is type II
LP well-posed in the generalized sense if and only if

lim
ε→0

α(T2
2 (ε)) = 0.

Definition 2.4 (VP) is said to be inf-externally stable if for each x0 ∈ X0, there exists
v0 ∈ V such that v0 ≤C f (x0).

Define

T1
3 (ε) = {x ∈ X1 : inf

v∈V
ξ(v − f (x)) ≥ −ε, dX0(x) ≤ ε}.

Theorem 2.7 Let (X, d1) be a complete metric space and V �= ∅. Suppose that (VP) is
inf-externally stable. Then (VP) is type III LP well-posed if and only if

lim
ε→0

α(T1
3 (ε)) = 0.

Proof First, we show that T1
3 (ε) is nonempty and closed for any ε > 0. The nonemp-

tiness of T1
3 (ε) follows from the fact that V �= ∅. Now let {xk} ⊂ T1

3 (ε) and xk → x̄.
Then,

inf
v∈V

ξ(v − f (xk)) ≥ −ε, (36)

dX0(xk) ≤ ε. (37)

Note that the continuity of f implies that the function infv∈V ξ(v − f (·)) is upper
semicontinuous. Taking the upper limit in (36), we have

inf
v∈V

ξ(v − f (x̄)) ≥ −ε. (38)

Taking the limit in (37), we obtain

dX0(x̄) ≤ ε. (39)

The combination of (38) and (39) yields x̄ ∈ T1
3 (ε). Hence, T1

3 (ε) is closed.
Second, we show that

X∗ = ∩ε>0T1
3 (ε). (40)

Obviously, X∗ ⊂ ∩ε>0T1
3 (ε). Now let x∗ ∈ ∩ε>0T1

3 (ε) and εk ↓ 0. Then

inf
v∈V

ξ(v − f (x∗)) ≥ −εk, (41)

dX0(x
∗) ≤ εk. (42)

From (42), we have x∗ ∈ X0. From (41), we have
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ξ(v − f (x∗)) ≥ 0, ∀v ∈ V. (43)

Suppose to the contrary that there exist x0 ∈ X0 and δ > 0 such that

f (x0) − f (x∗) ≤C −δe. (44)

By the inf-external stability of (VP), there exists v0 ∈ V such that v0 ≤C f (x0). This
together with (44) implies that

ξ(v0 − f (x∗)) ≤ −δ,

contradicting (43). Thus (40) is proved. Clearly, T1
3 (·) is increasing with ε > 0. By the

Kuratowski theorem, we have

haus(T1
3 (ε), T1

3 ) → 0 asε → 0, (45)

where

T1
3 = ∩ε>0T1

3 (ε)

is nonempty and compact.
Let {xk} be a type III LP minimizing sequence. Then, by taking a subsequence, we

can find a decreasing sequence εk → 0 such that

inf
v∈V

ξ(v − f (xk)) ≥ −εk,

dX0(xk) ≤ εk.

Thus, xk ∈ T1
3 (εk). By (40) and (45) we see that dX∗(xk) → 0. By Proposition 2.1 (VP)

is type III LP well-posed. The second part of the theorem can be proved similarly to
that of Theorem 2.3. The proof is complete. �

Define

T2
3 (ε) =

{
x ∈ X1 : inf

v∈V
ξ(v − f (x)) ≥ −ε, dK(g(x)) ≤ ε

}
.

The following theorem can be proved analogously to Theorem 2.7.

Theorem 2.8 Let (X, d1) be a complete metric space and V �= ∅. Suppose that (VP)
is inf-externally stable. Then (VP) is type III LP well-posed in the generalized sense if
and only if

lim
ε→0

α(T2
3 (ε)) = 0.

Next proposition gives sufficient conditions for the type III (generalized) LP well-
posedness.

Proposition 2.2

(1) Assume that there exists δ > 0 such that

X1(δ) = {x ∈ X1 : dX0(x) ≤ δ} (46)

is compact. Then, (VP) is type III LP well-posed.
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(2) Assume that there exists δ > 0 such that

X2(δ) = {x ∈ X1 : dK(g(x)) ≤ δ} (47)

is compact. Then (VP) is type III LP well-posed in the generalized sense.

Proof We prove only (1) and (2) can be similarly proved.
Let {xk} be a type III LP minimizing sequence. Then

lim inf
k→+∞

{ inf
v∈V

ξ(v − f (xk))} ≥ 0, (48)

dX0(xk) → 0. (49)

(49) implies that xk ∈ X1(δ) when k ≥ k0 for some k0 > 0. By the compactness of
X1(δ), there exist a subsequence {xkj} and x∗ ∈ X1(δ) such that xkj → x∗. This together
with (49) implies that x∗ ∈ X0. Moreover, from (48), we have

ξ(v − f (x∗)) ≥ 0, ∀v ∈ V. (50)

Suppose to the contrary that x∗ /∈ X∗. Then, there exists x0 ∈ X0 such that

f (x0) − f (x∗) ∈ −intC. (51)

Note that X0 ⊂ X1(δ) is nonempty and compact and f is continuous. Consequently,
there exists v0 ∈ V such that

v0 ≤C f (x0). (52)

The combination of (50)–(52) leads to a contradiction. Hence, x∗ ∈ X∗ and the proof
is complete. �

Now we consider the special case when X is a finite dimensional normed space,
Y = Rl, C = Rl+, e = (1, . . . , 1) ∈ Rl, ξ(y) = max{yi : i = 1, . . . , l}, ∀y ∈ Y.

Definition 2.2 Let X be a finite dimensional normed space, X2 ⊂ X be nonempty
and f0 : X2 → R1. f0 is said to be level-bounded on X2 if, for each t ∈ R1, the set
{x ∈ X2 : f0(x) ≤ t} is bounded.

Proposition 2.3 Assume that X is a finite dimensional space, Y = Rl, C = Rl+. Further
assume that one of the following conditions holds:

(1) for each i ∈ {1, . . . , l}, fi is level-bounded on X1;
(2) there exists δ > 0 such that for each i ∈ {1, . . . , l}, fi is level-bounded on X1(δ),

where X1(δ) is defined by (46); and
(3) for each i ∈ {1, . . . , l},

lim
x∈X1,‖x‖→+∞

max{fi(x), dX0(x)} = +∞. (53)

Then (VP) is type III LP well-posed.

Proof Clearly, (1)⇒(3)⇒(2). So we need only to prove that if (2) holds, then (VP)
is type III LP well-posed. Let {xk} be a type III LP minimizing sequence. Then (48)
and (49) hold. (49) implies that xk ∈ X1(δ), ∀k ≥ k0 for some k0 > 0. (48) implies that
there exists 0 < εk → 0 such that

ξ(v − f (xk)) ≥ −εk, ∀v ∈ V. (54)
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We assert that {xk} is bounded. Otherwise, assume without loss of generality that
‖xk‖ → +∞. Then, by the level-boundedness of each fi on X1(δ), we have

lim
k→+∞

fi(xk) = +∞.

It follows that (54) cannot hold. Thus, there exist a subsequence {xkj} of {xk} and
x∗ ∈ X1 such that xkj → x∗. This together with (49) implies that x∗ ∈ X0. Now we
show that x∗ ∈ X∗. Otherwise, there exist x0 ∈ X0 and δ0 > 0 such that

fi(x0) ≤ fi(x∗), i = 1, . . . , l. (55)

It is obvious that the set

A = {x ∈ X0 : fi(x) ≤ fi(x0), i = 1, . . . , l}
is nonempty and compact. Note that x0 ∈ A. It follows that there exists x̄ ∈ A such
that f (x) − f (x̄) /∈ −C\{0}, ∀x ∈ A. It is easily verified that x̄ ∈ X∗. Moreover, by
x̄ ∈ A, we have

f (x̄) ≤C f (x0).

This together with (55) implies that

f (x̄) ≤C f (x∗) − δ0e.

From xkj → x∗ and the continuity of f on X1, we have

f (x̄) ≤C f (xkj) − δ/2e,

when j is large enough, contradicting (54). The proof is complete. �

Similarly, we can prove the next result.

Proposition 2.4 Assume that X is a finite dimensional space, Y = Rl, C = Rl+. Further
assume that one of the following conditions holds:

(1) for each i ∈ {1, . . . , l}, fi is level-bounded on X1;
(2) there exists δ > 0 such that for each i ∈ {1, . . . , l}, fi is level-bounded on X2(δ),

where X2(δ) is defined by (47); and
(3) for each i ∈ {1, . . . , l},

lim
x∈X1,‖x‖→+∞ max{fi(x), dK(g(x))} = +∞. (56)

Then (VP) is type III LP well-posed in the generalized sense.

Now, we consider the case when Z is a normed space and K is a closed and convex
cone with nonempty interior intK and let e′ ∈ intK. Let t ≥ 0 and denote

X3(t) = {x ∈ X1 : g(x) ∈ K − te′}. (57)

Proposition 2.5 Let Z be a normed space and K a closed and convex cone with non-
empty interior intK and let e′ ∈ intK. If there exists t0 > 0 such that X3(t0) is compact,
then (VP) is type III LP well-posed in the generalized sense.
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Proof According to (2) of Proposition 2.2, we need only to show that there exists
δ0 > 0 such that X2(δ0) is compact. To this purpose, we need only to show that there
exist δ0 > 0 such that X2(δ0) ⊂ X3(t0). Suppose to the contrary that there exists
0 < δk → 0 and xk ∈ X2(δk) such that xk /∈ X3(t0). That is,

dK(g(xk)) ≤ δk, (58)

g(xk) /∈ K − t0e′. (59)

Define

η(z) = min{t ∈ R1 : z ∈ −K + te′}, ∀z ∈ Z.

It is obvious that the function η has the same properties as the function ξ . From (59),
we get

η(−g(xk)) ≥ t0, ∀k. (60)

From (58), we deduce that there exists wk ∈ K such that ‖g(xk) − wk‖ → 0. Let
zk = wk − g(xk) → 0. Then, −g(xk) = zk − wk, implying η(−g(xk)) ≤ η(zk) → 0,
contradicting (60). The proof is complete. �

Proposition 2.6 Assume that X is a finite dimensional space, Y = Rl, C = Rl+, e =
(1, . . . , 1) ∈ Rl. Let Z be a normed space and K a closed and convex cone with nonemp-
ty interior intK and let e′ ∈ intK. Further assume that one of the following conditions
holds:

(1) for each i ∈ {1, . . . , l}, fi is level-bounded on X1;
(2) there exists t0 > 0 such that for each i ∈ {1, . . . , l}, fi is level-bounded on X3(t0);

and
(3) for each i ∈ {1, . . . , l}, (56) holds. Then, (VP) is type III LP well-posed in the

generalized sense.

Proof It is easy to show that (1)⇒(3)⇒(2). Similar to proof of Proposition 2.5, we
can show that (2) implies that there exists δ0 > 0 such that for each i ∈ {1, . . . , l}, fi is
level-bounded on X2(δ0). By (2) of Proposition 2.4 (VP) is type III LP well-posed in
the generalized sense. �

Now we make the following assumption.

Assumption 2.1 X is a finite dimensional normed space, Y = Rl, C = Rl+ X1 ⊂ X is a
nonempty, closed and convex set, K ⊂ Y is a closed and convex cone with nonempty
interior intK and e′ ∈ intK, each fi(i = 1, . . . , l) is a convex function on X1 and g is
K-concave on X1 (namely, for any x1, x2 ∈ X1 and any θ ∈ (0, 1), there holds that
g(θx1 + (1 − θ)x2) − θg(x1) − (1 − θ)g(x2) ∈ K).

It is obvious that under Assumption 2.1 (VP) is a convex vector program.
The next result was obtained in ([9], Theorem 2.1).

Lemma 2.1 Let Assumption 2.1 hold. Then the following statements are equivalent:

(1) the optimal set X∗ of (VP) is nonempty and compact;
(2) for each i ∈ {1, . . . , l}, for any t ≥ 0, fi is level-bounded on the set X3(t) defined by

(57).
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Theorem 2.9 Let Assumption 2.1 hold. Then (VP) is type III LP well-posed in the
generalized sense if and only if the optimal set X∗ of (VP) is nonempty and compact.

Proof The sufficiency part follows directly from Lemma 2.1 and Proposition 2.6, while
the necessity part is obvious by (3) of Remark 1. �
Lemma 2.2 Let Assumption 2.1 hold. Then the following statements are equivalent:

(1) the optimal set X∗ of (VP) is nonempty and compact;
(2) for each i ∈ {1, · · · , l}, for any δ ≥ 0, fi is level-bounded on the set X1(δ) defined

by (46).

Proof It is clear that problem (VP) is equivalent to the following vector optimization
problem

(VP’) inf f (x)

s.t. dX0(x) ≤ 0.

By Assumption 2.1, X0 is nonempty and convex. It follows that dX0(·) is a continuous
and convex function. Applying Lemma 2.1 by setting g(x) = dX0(x), ∀x ∈ X1, Z = R1

and K = R1+, we see that X∗ is nonempty and compact if and only if each fi is level-
bounded on X1(δ), ∀δ ≥ 0, i ∈ {1, . . . , l}. �

The following theorem follows immediately from (2) of Proposition 2.3 and
Lemma 2.2.

Theorem 2.10 Let Assumption 2.1 hold. Then (VP) is type III LP well-posed if and
only if the optimal set X∗ of (VP) is nonempty and compact.

Remark 2 By Theorems 2.9 and 2.10 as well as (1) of Remark 1.1, if Assumption 2.1
holds, then any type of (generalized) LP well-posednesses is equivalent to the fact
that the set X∗ is nonempty and compact.

3 Relations among various types of (generalized) LP well-posedness

Simple relationships among the (generalized) LP well-posednesses were mentioned
in (2) of Remark 1. Under Assumption 2.1, the equivalence of all the six types of
(generalized) LP well-posednesses was noted in Remark 2. In this section, we inves-
tigate further relationships among them.

Theorem 3.1 Suppose that there exist δ > 0, α > 0, and c > 0, such that

dX0(x) ≤ cdα
K(g(x)), ∀x ∈ X2(δ), (61)

where X2(δ) is defined by (47). If (VP) is type I (resp. types II and III) LP well-posed,
then (VP) is type I (resp. types II and III) LP well-posed in the generalized sense.

Proof The proof is elementary. �
Remark 3 (61) is an error bound condition for the set X0 in terms of the residual
function
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r(x) = dK(g(x)), ∀x ∈ X1.

It is worth mentioning that this error bound condition has been intensively and exten-
sively studied (see, e.g. [2, 4, 15] and the references therein).

Definition 3.3 (1) Let W be a topological space and F : W → 2X be a set-valued map.
F is said to be upper Hausdorff semicontinuous (u.H.c. in short) at w ∈ W if, for any
ε > 0, there exists a neighbourhood U of w such that F(U) ⊂ B(F(w), ε), where for
Z ⊂ X and r > 0

B(Z, r) = {x ∈ X : dZ(x) ≤ r}.
It is clear that X2(δ) given by (47) can be seen as a set-valued map from R1+ to X.

Thus, we have the following theorem.

Theorem 3.2 Assume that the set-valued map X2(δ) defined by (47) is u.H.c. at 0 ∈ R1+.
If (VP) is type I (resp. types II and III) LP well-posed, then (VP) is type I (resp. types
II, and III) LP well-posed in the generalized sense.

Proof We prove only the type I case, the other two cases can be similarly proved. Let
{xk} ⊂ X1 be a type I generalized LP minimizing sequence. That is,

dV(f (xk)) → 0, (62)

dK(g(xk)) → 0. (63)

(63), together with the u.H.c. of X2(δ) at 0, implies that dX0(xk) → 0. This fact com-
bined with (62) implies that {xk} is a type I LP minimizing sequence. Thus, there exist
a subsequence {xkj} of {xk} and some x∗ ∈ X∗ such that xkj → x∗. Hence, (VP) is type
I LP well-posed in the generalized sense. �

Now, we consider the case when Z is a normed space.

Lemma 3.1 Let Z be a normed space and {xk} ⊂ X1. Then, dK(g(xk)) → 0 if and only
if there exists {zk} ⊂ Z with zk → 0 such that g(xk) ∈ K + zk, ∀k.

Proof Necessity. From dK(g(xk)) → 0, we deduce that there exists {uk} ⊂ K such that

‖g(xk) − uk‖ → 0.

Let zk = g(xk) − uk. Then, zk → 0 and g(xk) ∈ K + zk.
Sufficiency. Since g(xk) − zk ∈ K,

dK(g(xk)) ≤ ‖g(xk) − (g(xk) − zk)‖ = ‖zk‖ → 0. �
Let

X4(z) = {x ∈ X1 : g(x) ∈ K + z}, ∀z ∈ Z. (64)

Clearly, X4(z) can seen as a set-valued map from Z to X.
Corresponding to Theorem 3.2, we have the following result.

Theorem 3.3 Assume that the set-valued map X4(z) defined by (64) is u.H.c. at 0 ∈ Z.
If (VP) is type I (resp. types II, and III) LP well-posed, then (VP) is type I (resp. types
II, and III) LP well-posed in the generalized sense.
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In the special case when K is a closed and convex cone with nonempty interior
intK and e′ ∈ intK. We consider X3(t) defined by (57) as a set-valued map from R1+
to X. We have the next result.

Theorem 3.4 Assume that the set-valued map X3(t) defined by (57) is u.H.c. at 0 ∈ R1+.
If (VP) is type I (resp. types II, and III) LP well-posed, then (VP) is type I (resp. types
II and III) LP well-posed in the generalized sense.

To end this section, we present the following theorem.

Theorem 3.5 Assume that there exists δ0 > 0 such that g is uniformly continuous on
the set X1(δ0) defined by (46). If (VP) is type I (resp. types II, and III) LP well-posed
in the generalized sense, then (VP) is type I (resp. types II, and III) LP well-posed.

Proof We prove only the type I case. Suppose that {xk} ⊂ X1 is a type I LP minimizing
sequence. That is,

dV(f (xk)) → 0, (65)

dX0(xk) → 0. (66)

By (66), we have dX0(xk) ≤ δ0 when k ≥ k0 for some k0 > 0. By the uniform continu-
ity of g on X1(δ0), dK(g(xk)) → 0. This together with (65) implies that {xk} is a type
I generalized LP minimizing sequence. Thus, there exist a subsequence {xkj} of {xk}
and some x∗ ∈ X∗ such that xkj → x∗. Hence (VP) is type I LP well-posed. �

4 Application to a class of penalty methods

In this section, we consider the convergence of a class of penalty methods under the
assumption of type III generalized LP well-posedness of (VP).

Let α > 0 and e ∈ intC. Consider the following penalty problem for (VP):

(VPPα(r)) inf
x∈X1

f (x) + rdα
K(g(x))e, r > 0.

Remark 4 This class of penalty methods was studied in, e.g. [9].

Theorem 4.1 Let 0 < rn → +∞. Consider problems (VP) and (VPPα(rk)). Assume
that there exist r̄ > 0 and m0 ∈ R1 such that

f (x) + r̄dα
K(g(x))e ≥C m0e, ∀x ∈ X1. (67)

Let 0 < εk → 0. Suppose that each xk ∈ X1 satisfies

f (x) + rkdα
K(g(x))e − f (xk) − rkdα

K(g(xk))e + εke /∈ −intC, ∀x ∈ X1. (68)

Further assume that (VP) is type III LP well-posed in the generalized sense. Then,
there exist a subsequence {xkj} of {xk} and some x∗ ∈ X∗ such that xkj → x∗. Moreover,
each limit point of {xk} belongs to X∗.
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Proof Let x0 ∈ X0. From (68), we deduce that

f (x0) − f (xk) − rkdα
K(g(xk))e + εke /∈ −intC. (69)

The combination of (67) and (69) yields

f (x0) − m0e − (rk − r̄)dα
K(g(xk))e + εke /∈ −intC

implying

ξ(f (x0)) − m0 − (rk − r̄)dα
K(g(xk)) + εk ≥ 0

namely,

dK(g(xk)) ≤
[

ξ(f (x0)) + εk − m0

rk − r̄

]1/α

.

Hence,

lim
k→+∞

dK(g(xk)) = 0. (70)

Moreover, from (69), we have

f (x0) − f (xk) + εke /∈ −intC.

By the arbitrariness of x0 ∈ X0, this further implies that

v − f (xk) + εke /∈ −intC, ∀v ∈ V.

Therefore,

ξ(v − f (xk)) + εk ≥ 0, ∀v ∈ V.

Hence,

lim inf
k→+∞

{
inf
v∈V

ξ(v − f (xk))

}
≥ 0. (71)

By (70) and (71), {xk} is a type III generalized LP minimizing sequence. Since (VP)
is type III LP well-posed in the generalized sense, there exist a subsequence {xkj} of
{xk} and some x∗ ∈ X∗ such that xkj → x∗. Finally, suppose that x̄ is a limit point of
{xk}. Then, there exists a subsequence {xkj} such that xkj → x̄. It is obvious that {xkj}
is also a type III generalized LP minimizing sequence. By the type III generalized LP
well-posedness of (VP), there exist a subsequence {xkjl

} and some x̄′ ∈ X∗ such that
xkjl

→ x̄′. On the other hand, we have xkjl
→ x̄. It follows that x̄ = x̄′. Hence, x̄ ∈ X∗.

The proof is complete. �
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